

Analysis l	Report For:			Сору То:		
O0 10	eg Gelewski CRRA 0 Elwood Davis Roa orth Syracuse NY 13	•				
LAB ID:	SAMPLE ID:	REPORT DATE:	SAMPLE TYPE:	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07245	Amboy 1/2 screened Compost	6/27/2014	Blend of windrow and static pile		Windrow	

COMPOST ANALYSIS REPORT

Compost Test 3A

Analyte	Results	Results
	(As is basis)	(Dry weight basis)
pH	7.4	
Soluble Salts (1:5 w:w)	5.47 mmhos/cm	
Solids	60.5 %	
Moisture	39.5 %	_
Organic Matter	26.6 %	44.0 %
Total Nitrogen (N)	1.2 %	2.0 %
Organic Nitrogen ¹	1.1 %	1.9 %
Ammonium N (NH ₄ -N)	724.2 mg/kg	1196.6 mg/kg
	or	or
	0.0724 %	0.1197 %
Carbon (C)	16.9 %	27.9 %
Carbon:Nitrogen (C:N) Ratio	13.90	13.90
Phosphorus (as P ₂ O ₅) ²	0.44 %	0.73 %
Potassium (as K ₂ O) ²	0.57 %	0.94 %
Calcium (Ca)	4.88 %	8.06 %
Magnesium (Mg)	0.53 %	0.87 %
Particle size (< 9.5 mm)	96.72 %	

See comments on back of report .

²To convert phosphorus (as P₂O₅) into elemental phosphorus (P), divide by 2.29. To convert potassium (as K₂O) into elemental potassium (K), divide by 1.20.

pН

pH is a measure of active acidity in the feedstock or compost. The pH scale is 0 (acidic) to 14 (basic) with 7 being neutral. Most finished composts will have pH values in the range of 5.0 to 8.5. Ideal pH depends on compost use. A lower pH is preferred for certain ornamental plants while a neutral pH is suitable for most other applications. pH is not a measure of the total acidity or alkalinity and cannot be used to predict the effect of compost on soil pH.

Soluble Salts

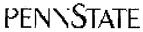
Soluble salts are determined by measuring electrical conductivity (EC) in a 1:5 (compost:water, weight ratio) slurry. EC is related to the total soluble salts dissolved in the slurry and is measured in units of millimhos/cm (mmhos/cm). Compost soluble salt levels typically range from 1 to 10 mmhos/cm. High salinity may be toxic to plants. Ideal soluble salt levels will depend on the end use of the compost. Final compost blends with soil or container media/potting mixes should be tested for soluble salts.

% Solids, % Moisutre

The ideal moisture content for composting will depend on the water holding capacity of the materials being composted. In general, high organic matter materials have a higher water holding capacity and a higher ideal moisture content. A typical starting compost mix will have an ideal % solids content of 35-55 % (65-45 % moisture). Finished compost should have a % solids content of 50-60 % (50-40 % moisture).

% Organic Matter

There is no ideal organic matter level for feedstocks or finished compost. Organic matter content will decrease during composting. The organic matter content (dry weight basis) of typical feedstocks and starting mixes will be greater than 60 % while that of finished compost will be in the range of 30-70 %. An organic matter content (dry weight basis) of 50-60 % is desirable for most compost uses.


Nitrogen: Total, Organic, Ammonium, and Nitrate Total nitrogen (N) includes all forms of nitrogen: organic N, ammonium N (NH₄-N), and nitrate N (NO₃-N). Total N will normally range from less than 1 % to around 5 % (dry weight basis) in most feedstocks and from 0.5 to 2.5 % (dry weight basis) in finished composts. NO₃-N (an optional test) is generally present in only low concentrations in immature composts, although it may increase as the compost matures. NH₄-N levels may be high during initial stages of the composting process, but decrease as maturity increases. Organic N is determined by subtracting the inorganic N forms, NH₄-N and NO₃-N, from total N. However, because NO₃-N levels are generally very low, total nitrogen minus NH₄-N provides a good estimate of organic N in most composts and is the value shown on the front of this report. In stable, finished composts, most of the N should be in the organic form. While NH₄-N and NO₃-N are immediately available to plants, organic N is only slowly available, approximately 10 to 20 % per year. However, mineralization or break-down of organic N into available inorganic forms depends on the C: N ratio (see below) as well as factors such as soil moisture and temperature.

Total Carbon Total carbon (C) is a direct measurement of all organic and inorganic carbon in the compost sample. Unless the sample has a high pH (> 8.3) or is known to contain carbonates, essentially all carbon will be in the organic form. Compost organic matter typically contains around 54 % organic carbon by weight. The carbon content of individual feedstocks may vary from this ratio.

Carbon: Nitrogen Ratio This is the ratio of total carbon (C) to total nitrogen (N) in the compost sample provided. C:N ratio may be used as an indicator of compost stability and N availability. Compost C:N ratio typically decreases during composting if the starting C:N ratio is > 25, but may increase if the starting C:N ratio is low (< 15) and N is lost during the composting process. Composts with high C:N ratios (> 30) will likely immobilize or tie-up N if applied to soil, while those with low C:N ratios (< 20) will mineralize or break-down organic N to inorganic (plant-available) N.

Phosphorus, Potassium Phosphorus (P) and potassium (K) are plant macronutrients. Values reported are for total amounts given in the oxide forms (P_2O_5 and K_2O). These results provide an indication of the nutrient value of the compost sample. However, plant availability of total phosphorus and potassium in compost has not yet been established.

Nitrogen, Phosphorus, Potassium Balance When compost is applied on the basis of nitrogen (N), most composts will have an excess of phosphorus (P) and potassium (K) relative to crop demand. These mineral elements and salts can accumulate to above optimum levels with repeated application. Growers using compost should regularly soil test to monitor P, K and salt accumulation and should consider using other nutrient sources or nitrogen fixing legumes in their crop rotation especially when P and K levels are above optimum.

Analysis F	Analysis Report For:					
OC 100	Greg Gelewski OCRRA 100 Elwood Davis Road North Syracuse NY 13212					
LAB ID:	SAMPLE ID:	REPORT DATE:	SAMPLE TYPE:	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07245	Amboy 1/2 screened Compost	6/27/2014	Blend of windrow and		Windrow	

COMPOST ANALYSIS REPORT

EPA 503 Pollutants

Analyte	Results	Results	EPA SW 846 Method
·	(As is Basis)	(Dry Weight Basis)	EFA SW 040 MICHIOLI
Arsenic (As)	5.3 mg/kg	8.7 mg/kg	3050B + 6010
Cadmium (Cd)	< 0.4 mg/kg	< 0.6 mg/kg	3050B + 6010
Copper (Cu)	29.1 mg/kg	48.0 mg/kg	3050B + 6010
Lead (Pb)	13.1 mg/kg	21.7 mg/kg	3050B + 6010
Mercury (Hg)	0.039 mg/kg	0.064 mg/kg	7473
Molybdenum (Mo)	< 1.1 mg/kg	< 1.8 mg/kg	3050B + 6010
Nickel (Ni)	5.2 mg/kg	8.6 mg/kg	3050B + 6010
Selenium (Se)	< 1.1 mg/kg	< 1.8 mg/kg	3050B + 6010
Zinc (Zn)	67.4 mg/kg	111.4 mg/kg	3050B + 6010

Analysis Report For:			Сору То:			
Greg Gelewski OCRRA 100 Elwood Davis Road North Syracuse NY 13212						
LAB ID	SAMPLE ID	REPORT DATE	SAMPLE TYPE	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07245	Amboy 1/2 screened Compost	6/27/2014	Blend of windrow and		Windrow	

COMPOST BIOASSAY Seedling Emergence and Relative Growth

	TEST PARAMETERS
Test Dates:	06/20/2014 to 06/27/2014
Seed Type:	Cucumber-Marketmore 76 Variety
Media Type: (Control)	STA-Green Smart Soil Potting Mix
Vermiculite:	STA-Green Vermiculite
	TEST RESULTS
Emergence: (% of control)	100.00
Seedling Vigor: (%):	100.00

COMMENTS	

The bioassay test provides a screen for the presence of phytotoxins in compost based on seedling emergence and seedling vigor relative to a control. It provides an assessment of compost maturity although should not be used as a stand-alone indicator. The U.S. Compost Council Test Methods for the Examination of Composting and Compost provides the following Maturity Indicator Ratings based on this test.

Maturity Indicator Rating¹

Test Parameter	Very Mature	Mature	Immature
Emergence %	> 90	80-90	< 80
Seedling Vigor %	> 95	85-95	< 85

¹ Test Methods for the Examination of Composting and Composts

Fax (814) 863-4540

25

Agricultural Analytical Services Laboratory The Pennsylvania State University University Park PA 16802

Analysis Report For:			Сору То:			
OC 10	eg Gelewski CRRA 0 Elwood Davis Roa orth Syracuse NY 13:					
LAB ID	SAMPLE ID	REPORT DATE	SAMPLE TYPE	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07245	Amboy 1/2 screened Compost	6/27/2014	Blend of windrow and		Windrow	

RESPIROMETRY Carbon Dioxide (CO₂) Evolution Rate

TEST RESULTS					
mg CO ₂ -C/g solids/day:	3.8				
mg CO ₂ -C/g organic matter/day:	8.6				

Respirometry (CO₂ Evolution) provides a measurement of the relative microbial activity in a compost and, hence can be used as an estimate of compost stability. The interpretive index below from the U.S. Compost Council Test Methods for the Examination of Composting and Compost assumes optimal conditions for microbial activity are present including temperature, mositure and nutrients and that toxic components that would inhibit microbial respiration are absent.

Result*	Stability Rating	General Characteristics
< 2	Very Stable	Well cured Compost
	,	No continued decomposition
		No odors
		No potential for volatile fatty acid phytotoxicity and odor
2-8	Stable	Cured Compost
		Odor production not likely
		Limited potential for volatile fatty acid phytotoxicity and odor
		Minimal impact on soil carbon and nitrogen dynamics
8-15	Moderately	Uncured compost
	unstable,	Minimal odor production
	raw compost	Moderate to high potential for volatile fatty acid phytotoxicity Moderate potential for negative impact on soil carbon and nitrogen dynamics
15-40	Raw compost or	Uncured Compost
	raw organic products	Odor production likely
		High potential for volatile fatty acid phytotoxicity and odor
		High potential for negative impact on soil carbon and soil nitroge dynamics
> 40	Raw feedstocks,	Raw, extremely unstable material
	unstable material	Odor production expected
		Probably volatile fatty acid phytotoxicity with most materials
		Negative impact on soil carbon and nitrogen dynamics expected
		Generally not recommended for use as compost

^{*} Units in mg CO₂-C/g organic matter/day

OCRRA

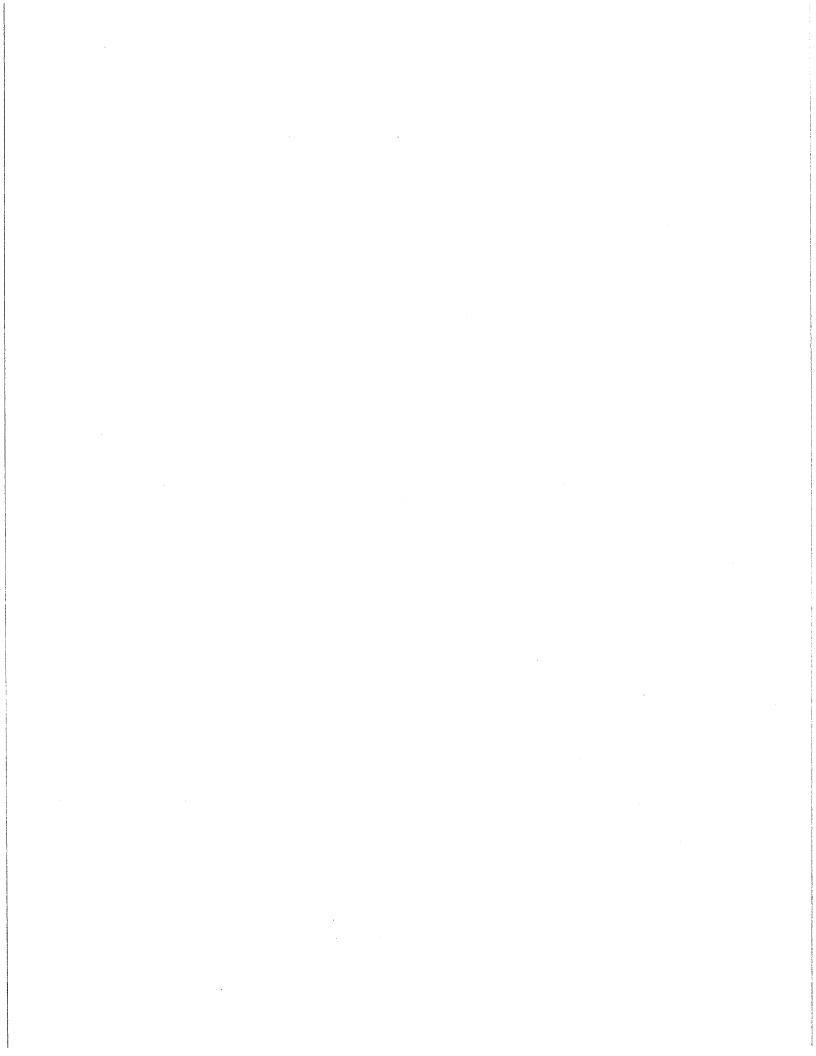
100 Elwood Davis Road North Syracuse NY 13212

<u>Tel:</u> 315-295-0734 <u>Fax:</u> 315-453-2872

Product Name: Amboy 1/2 screened Compost

Lab ID:

C07245


Report Date:

6/27/2014

Compost Technical Data Sheet

Compost Parameters	Reported as (units of measure)	Test Results	Test Results
Plant Nutrients:	%, weight basis	% wet weight basis	% dry weight basis
Nitrogen	Total N	1.22	2.01
Phosphorus	P_2O_5	0.44	0.73
Potassium	K ₂ O	0.57	0.94
Calcium	Ca	4.88	8.06
Magnesium	Mg	0.53	0.87
Moisture Content	%, wet weight basis	39.48	
Organic Matter Content	%, dry weight basis	43.95	
pН	unitless	7.35	
Soluble Salts (electrical conductivity)	dS/m (mmhos/cm)	5.47	
Particle Size	< 9.5 mm	96.72	
Stability Indicator (respirometry) CO ₂ Evolution	mg CO ₂ -C/G TS/day, AND mg CO ₂ -C/G OM/day	3.82 8.63	
Maturity Indicator (bioassay) Percent Emergence, AND Percent Seedling Vigor	% of control %	100.00 100.00	
Select Pathogens	PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.32(a)		
Trace Metals	PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.13, Tables 1 and 3		Mo, Ni, Se, and Zn are less than S EPA Class A Standard 40 CFR §

Participants in the US Composting Council's Seal of Testing Assurance Program have shown the commitment to test their compost products on a prescribed basis and provide this data, along with compost end use instructions, as a means to better serve the needs of their compost customers.

OCRRA

100 Elwood Davis Road North Syracuse NY 13212

<u>Tel:</u> 315-295-0734 <u>Fax:</u> 315-453-2872

Product Name: Amboy 1/2 screened Compost

Lab ID:

C07245

Report Date:

6/27/2014

Compost Technical Data Sheet

Compost Parameters	Reported as (units of measure)	Test Results
Plant Nutrients:		Not reported
Moisture Content	%, wet weight basis	39.48
Organic Matter Content	%, dry weight basis	43.95
рН	unitless	7.35
Soluble Salts (electrical conductivity)	dS/m (mmhos/cm)	5.47
Particle Size	< 9.5 mm	96.72
Stability Indicator (respirometry) CO ₂ Evolution	mg CO ₂ -C/G TS/day, AND mg CO ₂ -C/G OM/day	3.82 8.63
Maturity Indicator (bioassay) Percent Emergence, AND Percent Seedling Vigor	% of control %	100.00 100.00
Select Pathogens	PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.32(a)	
Trace Metals	PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.13, Tables 1 and 3	PASS: As, Cd, Cu, Pb, Hg, Mo, Ni, Se, and Zn are less than limits specifed by US EPA Class A Standard 40 CFR § 503.13, Tables 1 and 3

Participants in the US Composting Council's Seal of Testing Assurance Program have shown the commitment to test their compost products on a prescribed basis and provide this data, along with compost end use instructions, as a means to better serve the needs of their compost customers.

- Charles described on all and	
and the second s	
Secretary to a section of the second	
and the second s	
and the second content of the second content	
- Comments of the Comments of	
and the second of the second o	
make a life man and a second second second second second second second	

Analysis F	Analysis Report For:					
OC 10	eg Gelewski CRRA 0 Elwood Davis Roa orth Syracuse NY 13	-				
LAB ID:	SAMPLE ID:	REPORT DATE:	SAMPLE TYPE:	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07246	Amboy 1/4" screened Premium Blend	6/27/2014			Windrow	

COMPOST ANALYSIS REPORT

Compost Test 3A

Analyte	Results (As is basis)	Results (Dry weight basis)
рН	7.4	
Soluble Salts (1:5 w:w)	5.31 mmhos/cm	
Solids	61.5 %	· · · · · · · · · · · · · · · · · · ·
Moisture	38.5 %	
Organic Matter	25.4 %	41.3 %
Total Nitrogen (N)	1.2 %	2.0 %
Organic Nitrogen ¹	1.1 %	1.9 %
Ammonium N (NH ₄ -N)	591.1 mg/kg or	961.4 mg/kg
	0.0594 %	0.0966 %
Carbon (C)	16.2 %	26.4 %
Carbon:Nitrogen (C:N) Ratio	13.50	13.50
Phosphorus (as P ₂ O ₅) ²	0.48 %	0.77 %
Potassium (as K ₂ O) ²	0.57 %	0.93 %
Calcium (Ca)	4.12 %	6.70 %
Magnesium (Mg)	0.53 %	0.86 %
Particle size (< 9.5 mm)	100.00 %	

¹See comments on back of report .

²To convert phosphorus (as P₂O₅) into elemental phosphorus (P), divide by 2.29. To convert potassium (as K₂O) into elemental potassium (K), divide by 1.20.

pН

pH is a measure of active acidity in the feedstock or compost. The pH scale is 0 (acidic) to 14 (basic) with 7 being neutral. Most finished composts will have pH values in the range of 5.0 to 8.5. Ideal pH depends on compost use. A lower pH is preferred for certain ornamental plants while a neutral pH is suitable for most other applications. pH is not a measure of the total acidity or alkalinity and cannot be used to predict the effect of compost on soil pH.

Soluble Salts

Soluble salts are determined by measuring electrical conductivity (EC) in a 1:5 (compost:water, weight ratio) slurry. EC is related to the total soluble salts dissolved in the slurry and is measured in units of millimhos/cm (mmhos/cm). Compost soluble salt levels typically range from 1 to 10 mmhos/cm. High salinity may be toxic to plants. Ideal soluble salt levels will depend on the end use of the compost. Final compost blends with soil or container media/potting mixes should be tested for soluble salts.

% Solids, % Moisutre

The ideal moisture content for composting will depend on the water holding capacity of the materials being composted. In general, high organic matter materials have a higher water holding capacity and a higher ideal moisture content. A typical starting compost mix will have an ideal % solids content of 35-55 % (65-45 % moisture). Finished compost should have a % solids content of 50-60 % (50-40 % moisture).

% Organic Matter There is no ideal organic matter level for feedstocks or finished compost. Organic matter content will decrease during composting. The organic matter content (dry weight basis) of typical feedstocks and starting mixes will be greater than 60 % while that of finished compost will be in the range of 30-70 %. An organic matter content (dry weight basis) of 50-60 % is desirable for most compost uses.

Nitrogen: Total, Organic, Ammonium, and Nitrate Total nitrogen (N) includes all forms of nitrogen: organic N, ammonium N (NH_4 -N), and nitrate N (NO_3 -N). Total N will normally range from less than 1 % to around 5 % (dry weight basis) in most feedstocks and from 0.5 to 2.5 % (dry weight basis) in finished composts. NO_3 -N (an optional test) is generally present in only low concentrations in immature composts, although it may increase as the compost matures. NH_4 -N levels may be high during initial stages of the composting process, but decrease as maturity increases. Organic N is determined by subtracting the inorganic N forms, NH_4 -N and NO_3 -N, from total N. However, because NO_3 -N levels are generally very low, total nitrogen minus NH_4 -N provides a good estimate of organic N in most composts and is the value shown on the front of this report. In stable, finished composts, most of the N should be in the organic form. While NH_4 -N and NO_3 -N are immediately available to plants, organic N is only slowly available, approximately 10 to 20 % per year. However, mineralization or break-down of organic N into available inorganic forms depends on the C: N ratio (see below) as well as factors such as soil moisture and temperature.

Total Carbon

Total carbon (C) is a direct measurement of all organic and inorganic carbon in the compost sample. Unless the sample has a high pH (> 8.3) or is known to contain carbonates, essentially all carbon will be in the organic form. Compost organic matter typically contains around 54 % organic carbon by weight. The carbon content of individual feedstocks may vary from this ratio.

Carbon: Nitrogen Ratio This is the ratio of total carbon (C) to total nitrogen (N) in the compost sample provided. C:N ratio may be used as an indicator of compost stability and N availability. Compost C:N ratio typically decreases during composting if the starting C:N ratio is > 25, but may increase if the starting C:N ratio is low (< 15) and N is lost during the composting process. Composts with high C:N ratios (> 30) will likely immobilize or tie-up N if applied to soil, while those with low C:N ratios (< 20) will mineralize or break-down organic N to inorganic (plant-available) N.

Phosphorus, Potassium Phosphorus (P) and potassium (K) are plant macronutrients. Values reported are for total amounts given in the oxide forms (P_2O_5 and K_2O). These results provide an indication of the nutrient value of the compost sample. However, plant availability of total phosphorus and potassium in compost has not yet been established.

Nitrogen, Phosphorus, Potassium Balance When compost is applied on the basis of nitrogen (N), most composts will have an excess of phosphorus (P) and potassium (K) relative to crop demand. These mineral elements and salts can accumulate to above optimum levels with repeated application. Growers using compost should regularly soil test to monitor P, K and salt accumulation and should consider using other nutrient sources or nitrogen fixing legumes in their crop rotation especially when P and K levels are above optimum.

Analysis F	Report For:			Сору То:		
OC 100	eg Gelewski CRRA DElwood Davis Roa rth Syracuse NY 13	-				
LAB ID:	SAMPLE ID:	REPORT DATE:	SAMPLE TYPE:	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07246	Amboy 1/4" screened Premium Blend	6/27/2014			Windrow	

COMPOST ANALYSIS REPORT

EPA 503 Pollutants

Analyte	Results (As is Basis)	Results (Dry Weight Basis)	EPA SW 846 Method
Arsenic (As)	2.6 mg/kg	4.2 mg/kg	3050B + 6010
Cadmium (Cd)	< 0.4 mg/kg	< 0.6 mg/kg	3050B + 6010
Copper (Cu)	26.3 mg/kg	42.9 mg/kg	3050B + 6010
Lead (Pb)	15.1 mg/kg	24.6 mg/kg	3050B + 6010
Mercury (Hg)	0.033 mg/kg	0.054 mg/kg	7473
Molybdenum (Mo)	< 1.1 mg/kg	< 1.7 mg/kg	3050B + 6010
Nickel (Ni)	5.3 mg/kg	8.5 mg/kg	3050B + 6010
Selenium (Se)	< 1.1 mg/kg	< 1.7 mg/kg	3050B + 6010
Zinc (Zn)	74.2 mg/kg	120.7 mg/kg	3050B + 6010

Seedling Vigor:

(%):

100.00

Agricultural Analytical Services Laboratory The Pennsylvania State University University Park PA 16802

Analysis l	Report For:			Сору То:		
O(10	eg Gelewski CRRA 0 Elwood Davis Road orth Syracuse NY 132	.				
LAB ID	SAMPLE ID	REPORT DATE	SAMPLE TYPE	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07246	Amboy 1/4" screened Premium Blend	6/27/2014			Windrow	

COMPOST BIOASSAY Seedling Emergence and Relative Growth

	TEST PARAMETERS
Test Dates:	06/20/2014 to 06/27/2014
Seed Type:	Cucumber-Marketmore 76 Variety
Media Type: (Control)	STA-Green Smart Soil Potting Mix
Vermiculite:	STA-Green Vermiculite
	TEST RESULTS
Emergence: (% of control)	100.00

	COMMENTS	
_		

The bioassay test provides a screen for the presence of phytotoxins in compost based on seedling emergence and seedling vigor relative to a control. It provides an assessment of compost maturity although should not be used as a stand-alone indicator. The U.S. Compost Council Test Methods for the Examination of Composting and Compost provides the following Maturity Indicator Ratings based on this test.

Maturity Indicator Rating¹

Test Parameter	Very Mature	Mature	Immature
Emergence %	> 90	80-90	< 80
Seedling Vigor %	> 95	85-95	< 85

¹ Test Methods for the Examination of Composting and Composts

Premium Blend

(814) 863-0841

Fax (814) 863-4540

Agricultural Analytical Services Laboratory The Pennsylvania State University University Park PA 16802

Analysis R	teport For:			Сору То:		
OC	eg Gelewski CRRA	1				
	Elwood Davis Road rth Syracuse NY 132					
LAB ID	SAMPLE ID	REPORT DATE	SAMPLE TYPE	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07246	Amboy 1/4" screened	6/27/2014			Windrow	

RESPIROMETRY Carbon Dioxide (CO₂) Evolution Rate

6/27/2014

TEST RESULTS					
mg CO ₂ -C/g solids/day:	3.8				
mg CO ₂ -C/g organic matter/day:	8.9				

Respirometry (CO₂ Evolution) provides a measurement of the relative microbial activity in a compost and, hence can be used as an estimate of compost stability. The interpretive index below from the U.S. Compost Council Test Methods for the Examination of Composting and Compost assumes optimal conditions for microbial activity are present including temperature, mositure and nutrients and that toxic components that would inhibit microbial respiration are absent.

Result*	Stability Rating	General Characteristics
< 2	Very Stable	Well cured Compost
	•	No continued decomposition
		No odors
		No potential for volatile fatty acid phytotoxicity and odor
2-8	Stable	Cured Compost
		Odor production not likely
		Limited potential for volatile fatty acid phytotoxicity and odor
		Minimal impact on soil carbon and nitrogen dynamics
8-15	Moderately	Uncured compost
	unstable,	Minimal odor production
	raw compost	Moderate to high potential for volatile fatty acid phytotoxicity Moderate potential for negative impact on soil carbon and nitrogen dynamics
15-40	Raw compost or	Uncured Compost
	raw organic products	Odor production likely
		High potential for volatile fatty acid phytotoxicity and odor
		High potential for negative impact on soil carbon and soil nitroge dynamics
> 40	Raw feedstocks,	Raw, extremely unstable material
	unstable material	Odor production expected
		Probably volatile fatty acid phytotoxicity with most materials
		Negative impact on soil carbon and nitrogen dynamics expected
		Generally not recommended for use as compost

^{*} Units in mg CO₂-C/g organic matter/day

Analysis F	Analysis Report For:			Сору То:		
OC 10	Greg Gelewski OCRRA 100 Elwood Davis Road North Syracuse NY 13212					
LAB ID:	SAMPLE ID:	REPORT DATE:	SAMPLE TYPE:	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07244	Jamesville 1/2 screened Compost	6/27/2014			Windrow	

COMPOST ANALYSIS REPORT

Compost Test 3A

Analyte	Results (As is basis)	Results (Dry weight basis)
рН	7.7	
Soluble Salts (1:5 w:w)	3.91 mmhos/cm	
Solids	62.9 %	
Moisture	37.1 %	
Organic Matter	27.0 %	42.9 %
Total Nitrogen (N)	1.2 %	2.0 %
Organic Nitrogen ¹	1.2 %	1.9 %
Ammonium N (NH ₄ -N)	277.4 mg/kg or	441.0 mg/kg or
	0.0277 %	0.0441 %
Carbon (C)	16.8 %	26.7 %
Carbon:Nitrogen (C:N) Ratio	13.50	13.50
Phosphorus (as P ₂ O ₅) ²	0.46 %	0.74 %
Potassium (as K ₂ O) ²	0.62 %	0.99 %
Calcium (Ca)	5.52 %	8.78 %
Magnesium (Mg)	0.86 %	1.37 %
Particle size (< 9.5 mm)	98.95 %	

See comments on back of report .

 $^{^{2}}$ To convert phosphorus (as $P_{2}O_{5}$) into elemental phosphorus (P), divide by 2.29. To convert potassium (as $K_{2}O$) into elemental potassium (K), divide by 1.20.

pН

pH is a measure of active acidity in the feedstock or compost. The pH scale is 0 (acidic) to 14 (basic) with 7 being neutral. Most finished composts will have pH values in the range of 5.0 to 8.5. Ideal pH depends on compost use. A lower pH is preferred for certain ornamental plants while a neutral pH is suitable for most other applications. pH is not a measure of the total acidity or alkalinity and cannot be used to predict the effect of compost on soil pH.

Soluble Salts

Soluble salts are determined by measuring electrical conductivity (EC) in a 1:5 (compost:water, weight ratio) slurry. EC is related to the total soluble salts dissolved in the slurry and is measured in units of millimhos/cm (mmhos/cm). Compost soluble salt levels typically range from 1 to 10 mmhos/cm. High salinity may be toxic to plants. Ideal soluble salt levels will depend on the end use of the compost. Final compost blends with soil or container media/potting mixes should be tested for soluble salts.

% Solids, % Moisutre

The ideal moisture content for composting will depend on the water holding capacity of the materials being composted. In general, high organic matter materials have a higher water holding capacity and a higher ideal moisture content. A typical starting compost mix will have an ideal % solids content of 35-55 % (65-45 % moisture). Finished compost should have a % solids content of 50-60 % (50-40 % moisture).

% Organic Matter

There is no ideal organic matter level for feedstocks or finished compost. Organic matter content will decrease during composting. The organic matter content (dry weight basis) of typical feedstocks and starting mixes will be greater than 60 % while that of finished compost will be in the range of 30-70 %. An organic matter content (dry weight basis) of 50-60 % is desirable for most compost uses.

Nitrogen: Total, Organic, Ammonium, and Nitrate Total nitrogen (N) includes all forms of nitrogen: organic N, ammonium N (NH₄-N), and nitrate N (NO₃-N). Total N will normally range from less than 1 % to around 5 % (dry weight basis) in most feedstocks and from 0.5 to 2.5 % (dry weight basis) in finished composts. NO₃-N (an optional test) is generally present in only low concentrations in immature composts, although it may increase as the compost matures. NH₄-N levels may be high during initial stages of the composting process, but decrease as maturity increases. Organic N is determined by subtracting the inorganic N forms, NH₄-N and NO₃-N, from total N. However, because NO₃-N levels are generally very low, total nitrogen minus NH₄-N provides a good estimate of organic N in most composts and is the value shown on the front of this report. In stable, finished composts, most of the N should be in the organic form. While NH₄-N and NO₃-N are immediately available to plants, organic N is only slowly available, approximately 10 to 20 % per year. However, mineralization or break-down of organic N into available inorganic forms depends on the C: N ratio (see below) as well as factors such as soil moisture and temperature.

Total Carbon Total carbon (C) is a direct measurement of all organic and inorganic carbon in the compost sample. Unless the sample has a high pH (> 8.3) or is known to contain carbonates, essentially all carbon will be in the organic form. Compost organic matter typically contains around 54 % organic carbon by weight. The carbon content of individual feedstocks may vary from this ratio.

Carbon: Nitrogen Ratio This is the ratio of total carbon (C) to total nitrogen (N) in the compost sample provided. C:N ratio may be used as an indicator of compost stability and N availability. Compost C:N ratio typically decreases during composting if the starting C:N ratio is > 25, but may increase if the starting C:N ratio is low (< 15) and N is lost during the composting process. Composts with high C:N ratios (> 30) will likely immobilize or tie-up N if applied to soil, while those with low C:N ratios (< 20) will mineralize or break-down organic N to inorganic (plant-available) N.

Phosphorus, Potassium Phosphorus (P) and potassium (K) are plant macronutrients. Values reported are for total amounts given in the oxide forms (P_2O_5 and K_2O). These results provide an indication of the nutrient value of the compost sample. However, plant availability of total phosphorus and potassium in compost has not yet been established.

Nitrogen, Phosphorus, Potassium Balance When compost is applied on the basis of nitrogen (N), most composts will have an excess of phosphorus (P) and potassium (K) relative to crop demand. These mineral elements and salts can accumulate to above optimum levels with repeated application. Growers using compost should regularly soil test to monitor P, K and salt accumulation and should consider using other nutrient sources or nitrogen fixing legumes in their crop rotation especially when P and K levels are above optimum.

Analysis F	Analysis Report For:			Сору То:		
OC 100	Greg Gelewski OCRRA 100 Elwood Davis Road North Syracuse NY 13212					
LAB ID:	LAB ID: SAMPLE ID: REPORT DATE: SAMPLE TYPE:			FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07244	C07244 Jamesville 1/2 screened Compost 6/27/2014				Windrow	

COMPOST ANALYSIS REPORT

EPA 503 Pollutants

Analyte	Results (As is Basis)	Results (Dry Weight Basis)	EPA SW 846 Method
			2022
Arsenic (As)	2.7 mg/kg	4.3 mg/kg	3050B + 6010
Cadmium (Cd)	< 0.4 mg/kg	< 0.6 mg/kg	3050B + 6010
Copper (Cu)	28.3 mg/kg	45.0 mg/kg	3050B + 6010
Lead (Pb)	13.8 mg/kg	21.9 mg/kg	3050B + 6010
Mercury (Hg)	0.083 mg/kg	0.132 mg/kg	7473
Molybdenum (Mo)	< 1.1 mg/kg	< 1.8 mg/kg	3050B + 6010
Nickel (Ni)	6.5 mg/kg	10.3 mg/kg	3050B + 6010
Selenium (Se)	< 1.1 mg/kg	< 1.8 mg/kg	3050B + 6010
Zinc (Zn)	70.9 mg/kg	112.7 mg/kg	3050B + 6010

Analysis Report For:			Сору То:			
OC 10	eg Gelewski CRRA DElwood Davis Roarth Syracuse NY 13		·			
LAB ID	SAMPLE ID	REPORT DATE	SAMPLE TYPE	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07244	Jamesville 1/2 screened Compost	6/27/2014			Windrow	

	COMPOSE DIO ASSAM	_
	COMPOST BIOASSAY Seedling Emergence and Relative Growth	
	TEST PARAMETERS	<u>-</u>
Test Dates:	06/20/2014 to 06/27/2014	
Seed Type:	Cucumber-Marketmore 76 Variety	
Media Type: (Control)	STA-Green Smart Soil Potting Mix	
Vermiculite:	STA-Green Vermiculite	
	TEST RESULTS	
Emergence: (% of control)	100.00	
Seedling Vigor: (%):	100.00	
	COMMENTS	

The bioassay test provides a screen for the presence of phytotoxins in compost based on seedling emergence and seedling vigor relative to a control. It provides an assessment of compost maturity although should not be used as a stand-alone indicator. The U.S. Compost Council Test Methods for the Examination of Composting and Compost provides the following Maturity Indicator Ratings based on this test.

Maturity Indicator Rating¹

Test Parameter	Very Mature	Mature	Immature
Emergence %	> 90	80-90	< 80
Seedling Vigor %	> 95	85-95	< 85

¹ Test Methods for the Examination of Composting and Composts

(814) 863-0841

Fax (814) 853-4540

Agricultural Analytical Services Laboratory The Pennsylvania State University University Park PA 15802

Analysis F	Analysis Report For:			Сору То:		
OC 100	eg Gelewski CRRA DElwood Davis Road rth Syracuse NY 132	-				
LAB ID	SAMPLE ID	REPORT DATE	SAMPLE TYPE	FEEDSTOCKS	COMPOSTING METHOD	COUNTY
C07244	Jamesville 1/2 screened Compost	6/27/2014			Windrow	

$\begin{array}{c} \textbf{RESPIROMETRY} \\ \textbf{Carbon Dioxide (CO}_2) \ \textbf{Evolution Rate} \end{array}$

TEST RESULTS					
mg CO ₂ -C/g solids/day: mg CO ₂ -C/g organic matter/day:	2.5 6.7				

Respirometry (CO₂ Evolution) provides a measurement of the relative microbial activity in a compost and, hence can be used as an estimate of compost stability. The intrepretive index below from the U.S. Compost Council Test Methods for the Examination of Composting and Compost assumes optimal conditions for microbial activity are present including temperature, mositure and nutrients and that toxic components that would inhibit microbial respiration are absent.

Result*	Stability Rating	General Characteristics
< 2	Very Stable	Well cured Compost
	•	No continued decomposition
		No odors
		No potential for volatile fatty acid phytotoxicity and odor
2-8	Stable	Cured Compost
		Odor production not likely
		Limited potential for volatile fatty acid phytotoxicity and odor
		Minimal impact on soil carbon and nitrogen dynamics
8-15	Moderately	Uncured compost
	unstable,	Minimal odor production
	raw compost	Moderate to high potential for volatile fatty acid phytotoxicity Moderate potential for negative impact on soil carbon and nitrogen dynamics
15-40	Raw compost or	Uncured Compost
	raw organic products	Odor production likely
		High potential for volatile fatty acid phytotoxicity and odor
		High potential for negative impact on soil carbon and soil nitroge dynamics
> 40	Raw feedstocks,	Raw, extremely unstable material
	unstable material	Odor production expected
		Probably volatile fatty acid phytotoxicity with most materials
		Negative impact on soil carbon and nitrogen dynamics expected
		Generally not recommended for use as compost

^{*} Units in mg CO₂-C/g organic matter/day

OCRRA

100 Elwood Davis Road North Syracuse NY 13212

<u>Tel:</u> 315-295-0734 <u>Fax:</u> 315-453-2872

Product Name: Jamesville 1/2 screened Compost

Lab ID:

C07244

Report Date:

6/27/2014

Compost Technical Data Sheet

Compost Parameters	Reported as (units of measure)	Test Results	Test Results
Plant Nutrients:	%, weight basis	% wet weight basis	% dry weight basis
Nitrogen	Total N	1.24	1.98
Phosphorus	P_2O_5	0.46	0.74
Potassium	K ₂ O	0.62	0.99
Calcium	Ca	5.52	8.78
Magnesium	Mg	0.86	1.37
Moisture Content	%, wet weight basis	37.11	
Organic Matter Content	%, dry weight basis	42.90	
pН	unitless	7.68	
Soluble Salts (electrical conductivity)	dS/m (mmhos/cm)	3.91	
Particle Size	< 9.5 mm	98.95	
Stability Indicator (respirometry) CO ₂ Evolution	$mg CO_2$ -C/G TS/day, AND $mg CO_2$ -C/G OM/day	2.51 6.67	
Maturity Indicator (bioassay) Percent Emergence, AND Percent Seedling Vigor	% of control %	100.00 100.00	
Select Pathogens	PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.32(a)	1	
Trace Metals	PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.13, Tables 1 and 3		, Mo, Ni, Se, and Zn are less than US EPA Class A Standard 40 CFR § d 3

Participants in the US Composting Council's Seal of Testing Assurance Program have shown the commitment to test their compost products on a prescribed basis and provide this data, along with compost end use instructions, as a means to better serve the needs of their compost customers.

- in the state of	
particular and the Control of the Co	
The state of the s	
The state of the s	

OCRRA

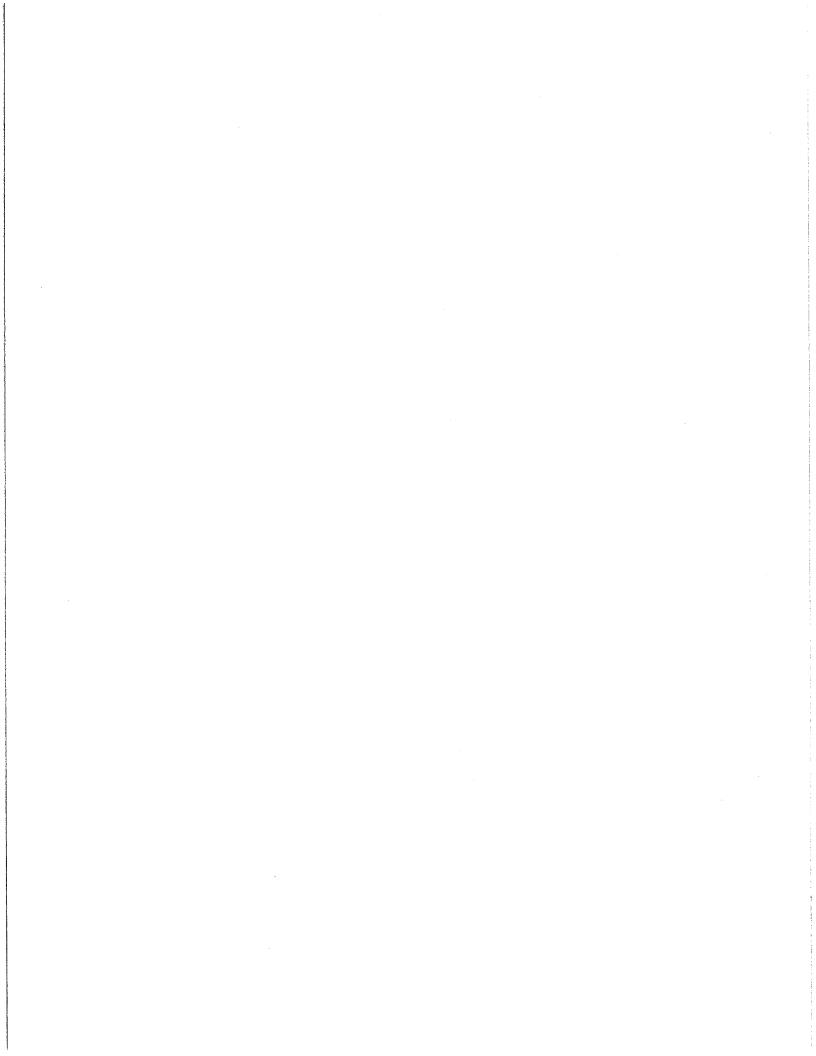
100 Elwood Davis Road North Syracuse NY 13212

<u>Tel:</u> 315-295-0734 <u>Fax:</u> 315-453-2872

Product Name: Jamesville 1/2 screened Compost

Lab ID:

C07244


Report Date:

6/27/2014

Compost Technical Data Sheet

Reported as (units of measure)	Test Results
	Not reported
%, wet weight basis	37.11
%, dry weight basis	42.90
unitless	7.68
dS/m (mmhos/cm)	3.91
< 9.5 mm	98.95
mg CO ₂ -C/G TS/day, AND mg CO ₂ -C/G OM/day	2.51 6.67
% of control %	100.00 100.00
PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.32(a)	
PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.13, Tables 1 and 3	PASS: As, Cd, Cu, Pb, Hg, Mo, Ni, Se, and Zn are less than limits specifed by US EPA Class A Standard 40 CFR § 503.13, Tables 1 and 3
	%, wet weight basis %, dry weight basis unitless dS/m (mmhos/cm) < 9.5 mm mg CO ₂ -C/G TS/day, AND mg CO ₂ -C/G OM/day % of control % PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.32(a) PASS/FAIL: per US EPA Class A standard, 40 CFR § 503.13,

Participants in the US Composting Council's Seal of Testing Assurance Program have shown the commitment to test their compost products on a prescribed basis and provide this data, along with compost end use instructions, as a means to better serve the needs of their compost customers.

